

W9 - Direttiva SSIGA per i pozzi ad uso potabile

Presentazione generale

Mattia Renggli, AIL

CAPITOLI

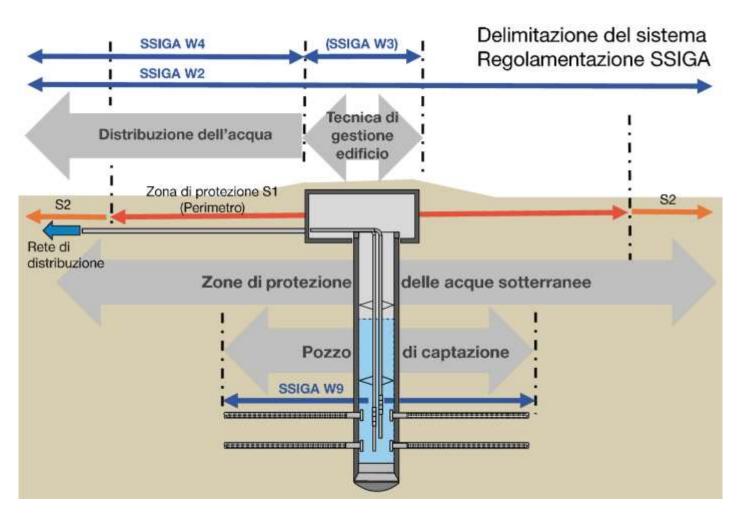
- 1. Scopo
- 2. Campo d'applicazione
- Definizione e descrizioni dei termini
- 4. Forme utilizzo delle captazioni di falda
- 5. Norme
- 6. Pianificazione e processi

CAPITOLI

- 7. Pianificazione strategica
- 8. Studi preliminari
- 9. Progettazione
- 10. Appalto
- 11. Realizzazione, controllo e messa in funzione
- 12. Esercizio e sorveglianza
- 13. Manutenzione

CAPITOLI

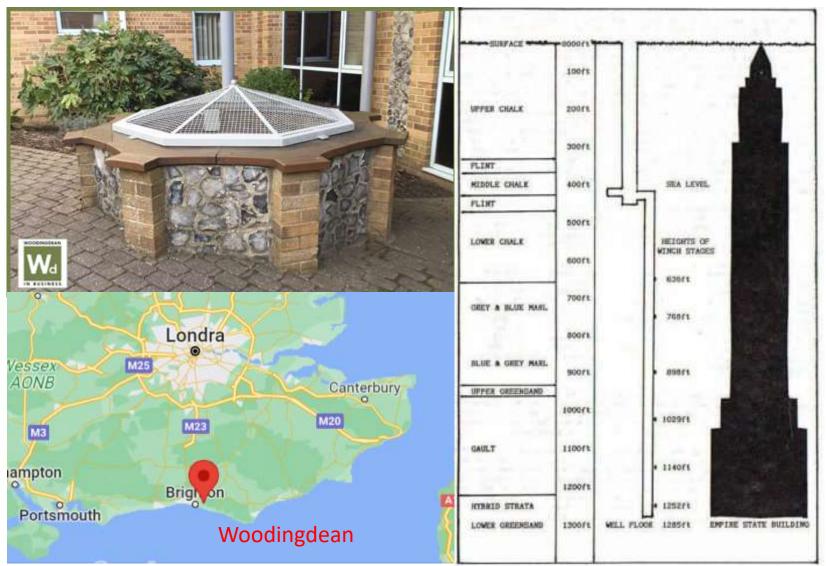
- 14. Smantellamento
- 15. Documentazione
- 16. Disposizioni conclusive



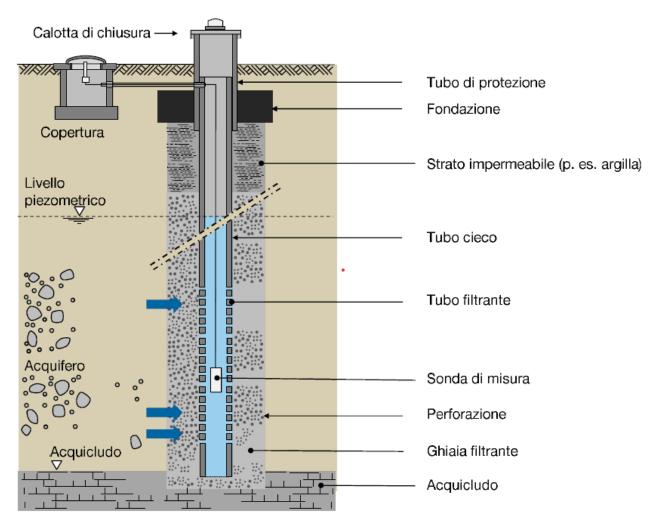
1. SCOPO DELLA DIRETTIVA

 «La presente Direttiva ha lo scopo di garantire la sicurezza tecnica, la sostenibilità e la redditività della costruzione e dell'esercizio di pozzi per l'estrazione di acque sotterranee ineccepibili per la produzione di acqua potabile.»

2. CAMPO D'APPLICAZIONE



3. DEFINIZIONI E TERMINI


Elenco di termini tecnici

4. FORME COSTRUTTIVE E UTILIZZO DEI POZZI

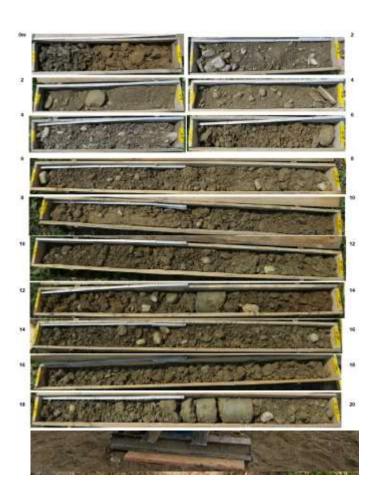
5. NORME

- Legislazione protezione acque (LPAc, OPAc)
- Legislazione derrate alimentari (Lderr, Oderr, OPPD)
- Altre legislazioni (LPAmb, ...)
- Direttive, normative, raccomandazioni (SVGW, DVGW, SIA, SNV, UFAM, SGK)

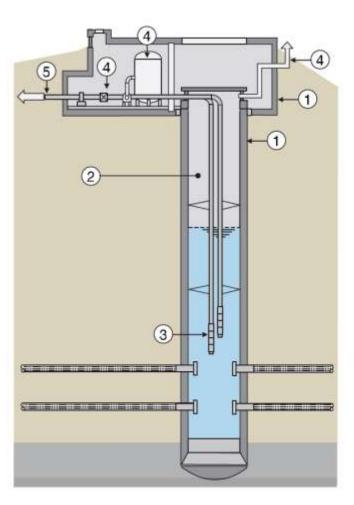
6. PIANIFICAZIONE E PROCESSI

- Pianificazione strategica SIA 11
- Studi preliminari SIA 21
- Progettazione SIA 31, 32 e 33
- Messa a concorso SIA 41
- o Realizzazione *SIA 51, 52 e 53*
- Esercizio e sorveglianza SIA 61 e 62
- Riabilitazione (manutenzione) SIA 63
- Messa fuori servizio, smantellamento
- Documentazione
- > Farsi accompagnare da professionisti

lotti


Zone e aree di protezione delle acque sotterranee

Estratio della carra diditale svizzera	E-244	22/1/202/02/02/02/07/02/07
Ubicazione	Approvazione da parte del CdS	Quantitativo captabile [l/min]
Comuni di Caslano e Magliaso Località Golf	09.04.1980 con ris. gov. n. 1915	20'000
Comuni di Cresciano e Claro Località Boscone	26.10.1982 con ris. gov. n. 6331	30'000
Comune di Croglio Località Motto Grande	21.12.1979 con ris. gov. n. 9361	4'000 – 8'000
Comune di Giubiasco	01.06.1979 con ris. gov. n. 4837	4'000
Comuni di Gnosca e Gorduno Località ex stand di tiro	27.08.1991 con ris. gov. n. 6940	27'000
Comuni di Iragna e Biasca Località Bosciarina	15.02.1978 con ris. gov. n. 1136	30'000
Comune di Serravalle-Malvaglia Località Loderio	22.05.1979 con ris. gov. n. 4538	30'000
Comune di Tegna	20.06.1984 con ris. gov. n. 3214	25'000
Comuni di Tenero-Contra e Gordola	30.08.1978 con ris. gov. n. 7596	20'000


8. STUDI PRELIMINARI

- Condizioni idrogeologiche locali
- Situazioni di rischio
- Analisi della acque di falda
- Delimitazione zone di protezione
- Perforazioni di sondaggio
- Prove di pompaggio/pozzo di prova
- Valutazione della redditività
- Idoneità all'autorizzazione

9. PROGETTAZIONE

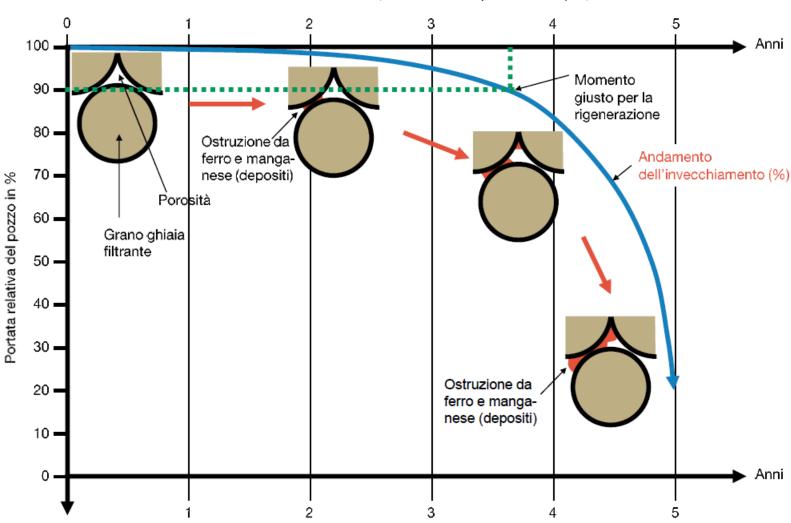
- Manufatti
- Pozzo
- Sistemi di sollevamento
- Dispositivi di sicurezza, aerazione e sfiato
- (5) Rete di condutture

9. PROGETTAZIONE

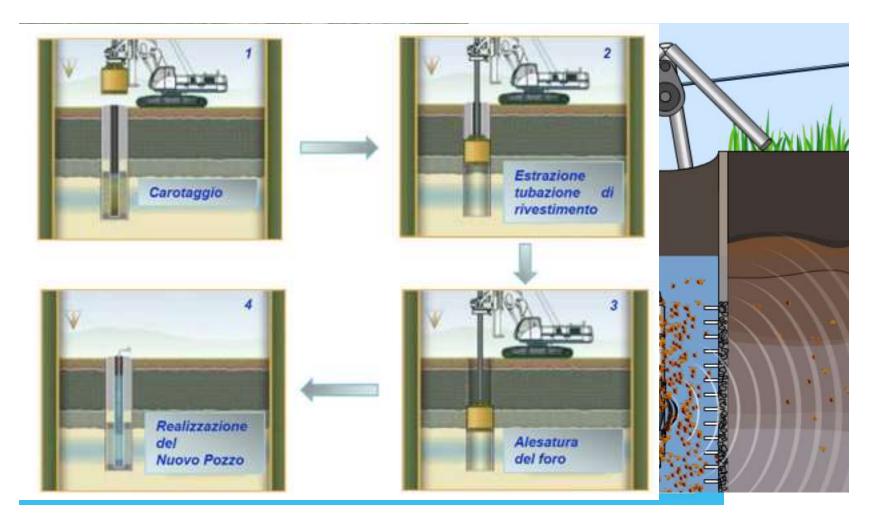
- Requisiti generali per un pozzo d'acqua
 - Durata di vita 80-100 anni
 - Prodotti e materiali
 - Sicurezza antisismica
- Requisiti relativi al manufatto «pozzo»
- Requisiti manufatto di chiusura
- Requisiti impianto di sollevamento
- Autorizzazioni
- Progettazione dei pozzi di prelievo

10. APPALTI

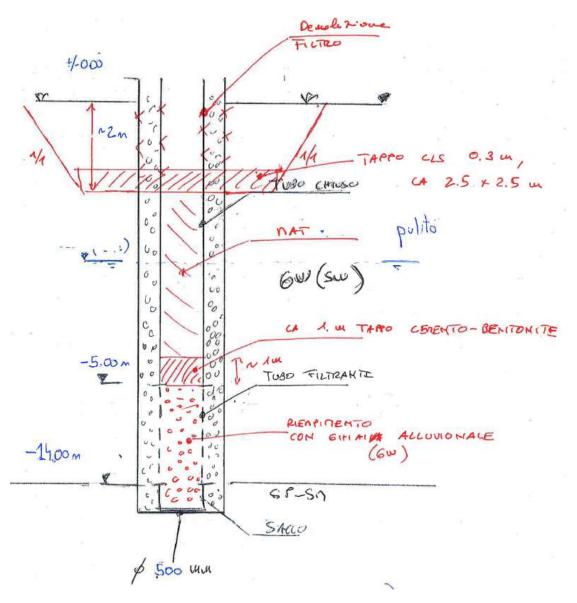
- LCPubb, RLCPubb, CIAP
- Prescrizioni (CPN 102)
- Elenco delle prestazioni
- Criteri di Idoneità
- Criteri d'aggiudicazione
- Piano di verifica (prove)
- Contratto


11. REAL. CONTROLLO E MESSA IN FUNZIONE

- Costruzione pozzo
 - Tecnica perforazione
 - Posa del dreno
 - Posa ghiaia
- Dissabbiatura
- Prova di pompaggio
- Collaudi



Portata costruzione nuova (portata di emungimento)/tempo (Anni)



13. MANUTENZIONE

15. DOCUMENTAZIONE

Informazioni preziose per posteri

ALLEGATI

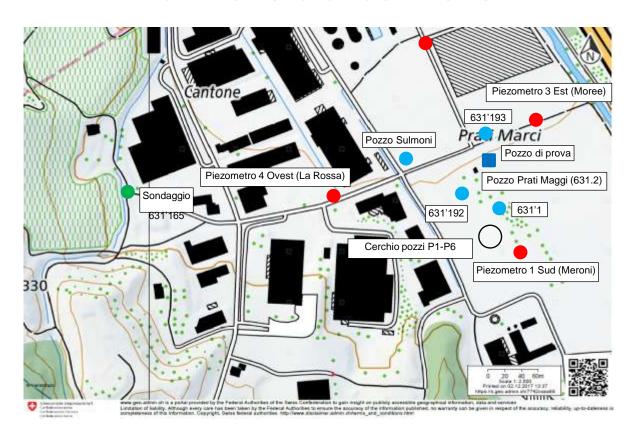
- Prove di pompaggio
- Tipi di tubi filtranti
- Requisiti relativi ai materiali drenanti
- Tecniche di perforazione
- Piano di sorveglianza
- Dossier del pozzo
- Panoramica dei metodi di rigenerazione meccanici

GRAZIE DELL'ATTENZIONE!

Pozzi profondi a Mendrisio: una nuova fonte di acqua potabile

Paolo Oppizzi, Geolog.ch SA

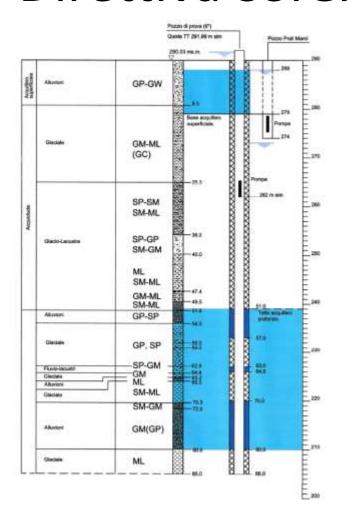
Pozzi profondi in località Prati Marci. Esecuzione e collaudo.

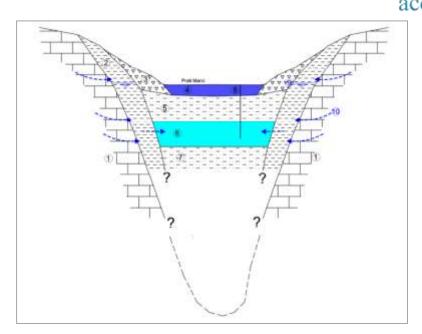


Indagini 2015-2018

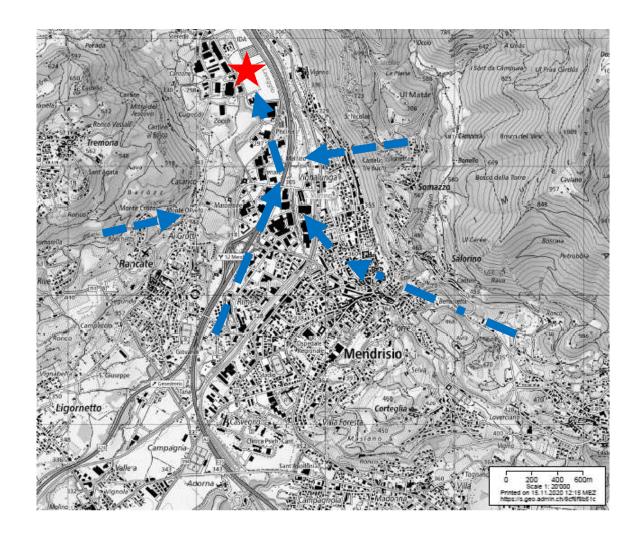
- Ottobre 2015. Perforazione del pozzo di prova.
- Novembre 2015. Prove di pompaggio (collaudo pozzo) con Qmax 860 l/min.
- Novembre 2015. Prova di pompaggio (sostenibilità) Q 13 l/s, Volume 17'000 m³.
- Dicembre 2016. Perforazione di 2 piezometri profondi 92 m e 99 metri.
- Febbraio-aprile 2017.
 - ➤ Pompaggio 650 l/min (11 l/s) dal pozzo di prova. Volume 1.54*10⁵ m³.
 - Prova di tracciamento.
- Analisi chimico-fisiche e batteriologiche dell'acqua.

Pozzi e rete di controllo



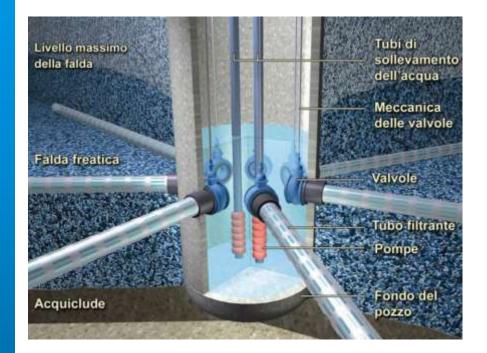


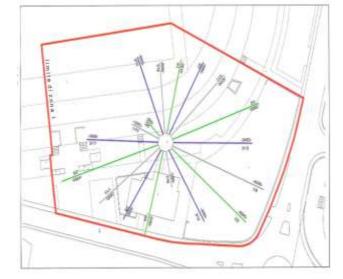
ticinesi

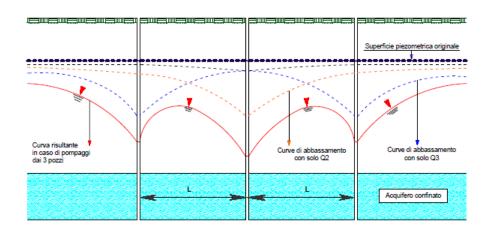


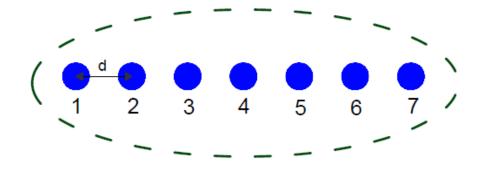
- 1) Ammassi Monte San Giorgio e del Monte Generoso;
- 2) Copertura glaciale e fluvio-glaciale dei versanti;
- 3) Depositi detritici alla base dei pendii;
- 4) Acquifero superficiale
- 5) Acquiclude;
- 6) Acquifero profondo confinato;
- 7) Base dell'acquifero profondo (Pliocene?);
- 8) Pozzi profondi (lunghezza 130 m);
- 9) Pressione dell'acqua nell'acquifero profondo;

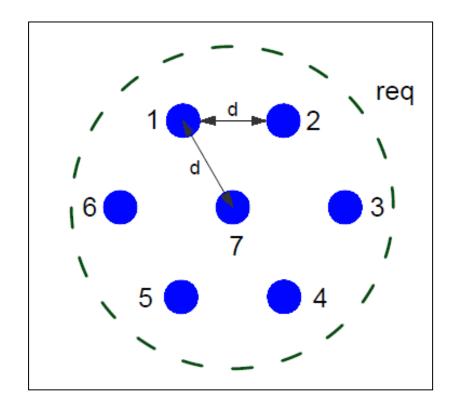
www.acquedotti.ch P. OPPIZZI, GEOLOG.CH



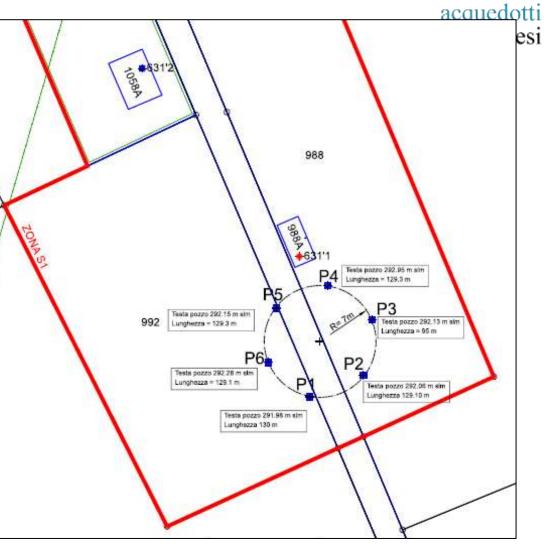


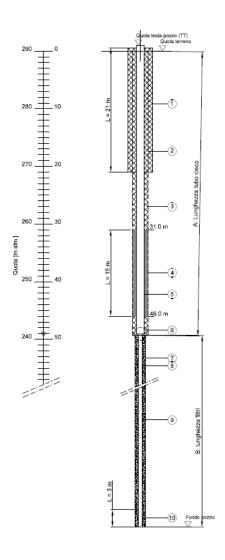


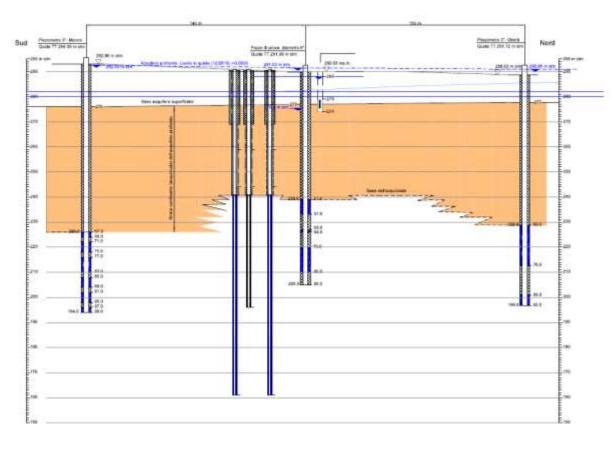


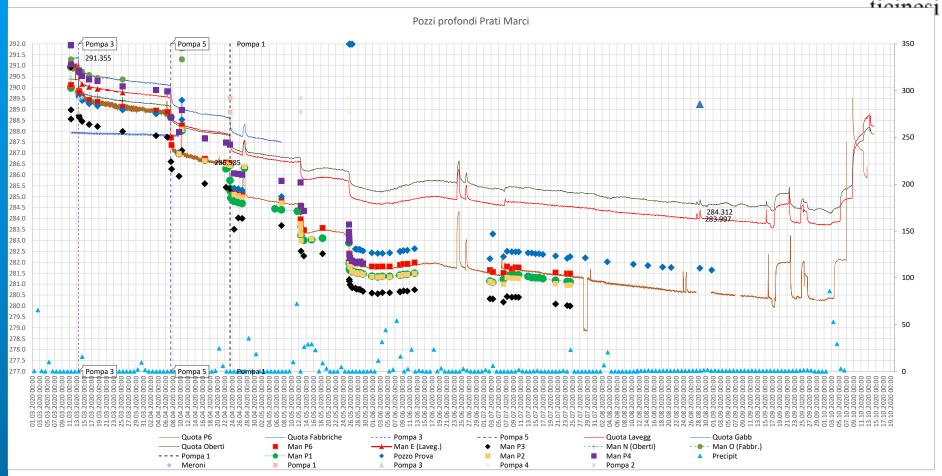


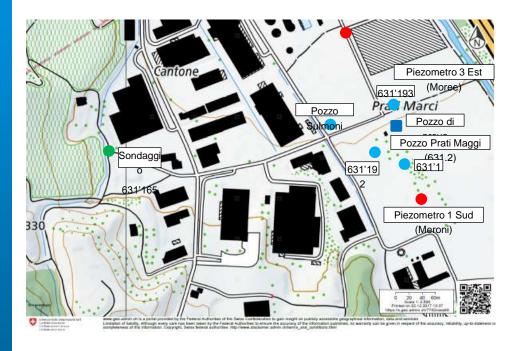
Esecuzione e test 2019-2020

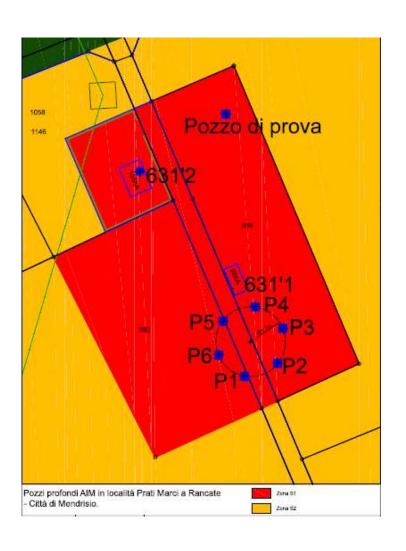












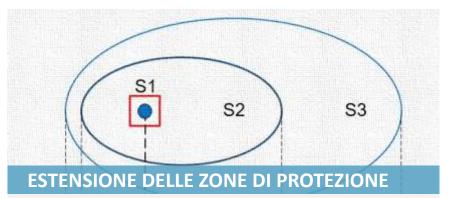
	P1-P6	Oberti (220 m)	Laveggio (105 m)
ΔH (12/2019-10/2020)	10-12 m	2.8 m	2.85 m
Durata pompaggio	128 giorni (25 maggio-3 ottobre 2020)		
Portata	60 l/s (3'600 l/min)		
Volume pompato	$2.9*10^4 \text{m}^3$		

Ubicazione di un pozzo: conciliare capacità e protezione

Agostino Clericetti

Ubicazione di un pozzo: conciliare capacità e protezione

1	II problema
2	Pianificazione strategica
3	Studi preliminari
4	Altri provvedimenti di protezione
5	Conclusioni


CAPACITÀ O PROTEZIONE?

CAPACITÀ DEL POZZO

Proporzionale al FLUSSO

- Velocità d'entrata
- Abbassamento
- © Permeabilità dell'acquifero
- © Superficie finestrata del filtro (profondità, tipo)
- Ů ..

Inversamente proporzionale al TEMPO D'AFFLUSSO

- ⊗ Velocità d'afflusso (portata)
- Permeabilità dell'acquifero
- ⊗ ..

Ubicazione di un pozzo: conciliare capacità e protezione

1	II problema
2	Pianificazione strategica
3	Studi preliminari
4	Altri provvedimenti di protezione
5	Conclusioni

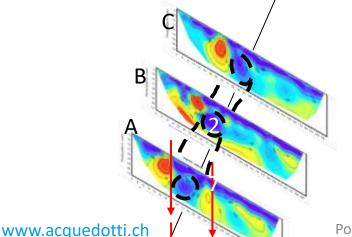
PIANIFICAZIONE STRATEGICA

 Copertura fabbisogno AIL 2050 (scenario più vantaggioso, criteri: sicurezza d'approvvigionamento, costi totali)

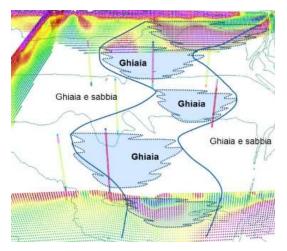
Fonte	Fabbisogno massimo	Fabbisogno medio
Acquifero Vedeggio	44%	34%
Lago	51%	41%
Sorgenti	5%	25%

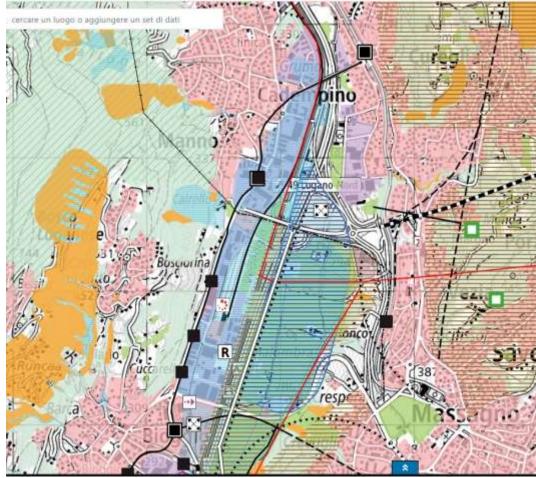
 Considerate la durata di vita degli impianti esistenti e l'evoluzione dei rischi, è emersa la necessità di un terzo pozzo nell'acquifero del Vedeggio

Ubicazione di un pozzo: conciliare capacità e protezione


1	II problema
2	Pianificazione strategica
3	Studi preliminari
4	Altri provvedimenti di protezione
5	Conclusioni

INDAGINE IDROGEOLOGICA


- 1. Valorizzare le conoscenze esistenti
- 2. Metodi meno costosi su larga scala
- 3. Metodi più precisi in zone promettenti
 - Diagrafie nei piezometri esistenti
 - Campagne geofisiche e geoelettriche
 - Sondaggi nell'area più promettente



SITUAZIONE DI RISCHIO

QUALITÀ DELL'ACQUA

In questo caso già nota (?)

- Acqua molle e aggressiva, richiede trattamento di deacidificazione
- Nitrati OK
- Clorotalonil &co. OK
- Arsenico (geogeno) OK
- Inquinamenti pregressi OK (ma sost. persistenti come i solventi alogenati ancora rilevabili -in tracce minime- 30+ anni dopo!)

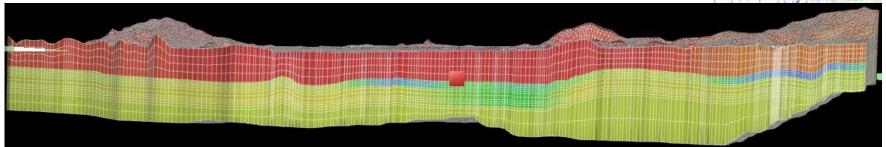
QUALITÀ DELL'ACQUA

Programma di analisi completo, ma ...

- Idrocarburi C₁₀-C₄₀ (oli tecnici) non inclusi,
 solitamente non (o poco) indagati,
 - o esigenze OPAC (immissione) 10 rispett. 20 mg/l
 - Valore massimo OPPB (rete) 0.020 mg/l (!)
- Limite rilevabilità dei laboratori d'analisi spesso 0.050 mg/l, solo i più specializzati 0.005 mg/l
- Protocollo di campionamento rigoroso, quando si cercano i milionesimi di grammo per litro!

PRE-DIMENSIONAMENTO ZP

- Il pozzo non esiste ancora!
- Metodi predittivi
 - Formule empiriche (Wyssling), precisione ⁽²⁾
 - Modelli numerici 2D / 3D, necessità di dati, investimento

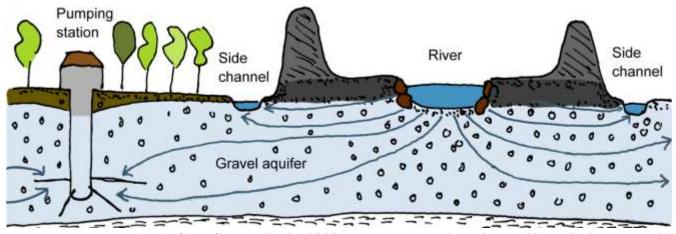


PRE-DIMENSIONAMENTO ZP

- Modello numerico indispensabile se:
 - Idrogeologia complessa (acquiferi sovrapposti, ...)
 - Interazione con corso d'acqua
 - Interazione con altre captazioni vicine
 - Precisione elevata richiesta (rischi, conflitti)
 - Necessità di valutare scenari diversi (ripartizione capacità fa più pozzi)

PRE-DIMENSIONAMENTO ZP

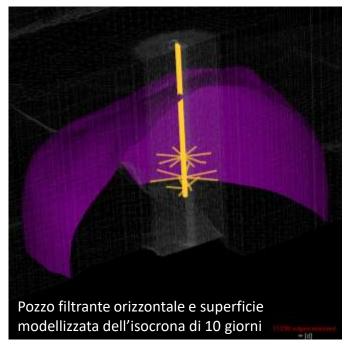
- Valutare estensione prevedibile zone di protezione
- Determinare tutti i potenziali pericoli e conflitti presenti e l'idoneità delle zone ad essere approvate
- Se necessario rivedere il dimensionamento del pozzo
- Processo iterativo: verificare l'estensione previsionale sulla base dei risultati della prova di pompaggio nel pozzo di prova
- NB: con il pozzo di prova è possibile verificare anche mediante tracciamento i parametri idrogeologici in direzioni critiche (ma a una portata inferiore di quella d'esercizio!)



Caso part.: INTERAZIONE FIUME-FALDA

 Nel caso in cui le acque del fiume infiltrino nell'acquifero, la direttiva cita l'analisi delle serie cronologiche

 È un metodo di misura dei tempi di scorrimento fra fiume e punto d'osservazione, mediante analisi statistica di traccianti naturali come la conducibilità

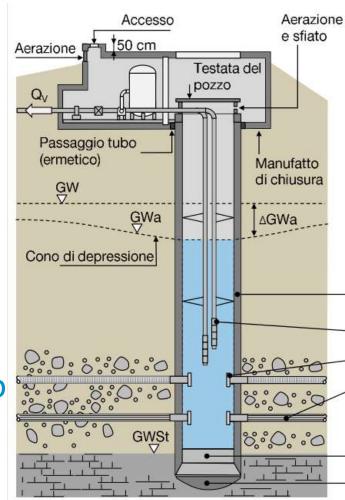

elettrica

Caso part.: ACQUIFERI SOVRAPPOSTI

- Pompare nell'acquifero inferiore consente una protezione maggiore
- Teoricamente nel caso di strati di separazione continui
 - e impermeabili, la zona di protezione in superficie potrebbe non essere necessaria (?)
- In pratica tali strati sono spesso discontinui e/o semipermeabili

Ubicazione di un pozzo: conciliare capacità e protezione

1	Il problema
2	Pianificazione strategica
3	Studi preliminari
4	Altri provvedimenti di protezione
5	Conclusioni



ALTRI PROVVEDIMENTI di PROTEZIONE

- Scelta della forma costruttiva più adeguata (verticale/orizzontale)
- Posizionamento adeguato dei filtri

Dal 1974 i pozzi filtranti orizzontali nell'acquifero del Vedeggio hanno dimostrato una resilienza notevole rispetto alle minacce d'inquinamento

ALTRI PROVVEDIMENTI di PROTEZIONE

- Profondità del livello della falda,
- spessore dello strato di protezione coesivo
- contenuto organico dello strato umico superficiale conferiscono una protezione supplementare
- Monitoraggio
- Trattamento (costi>redditività!) >W12

Ubicazione di un pozzo: conciliare capacità e protezione

1	II problema
2	Pianificazione strategica
3	Studi preliminari
4	Altri provvedimenti di protezione
5	Conclusioni

CONCLUSIONI

- La portata disponibile dell'acquifero non è il solo criterio per l'ubicazione di un pozzo
- Capacità maggiore del pozzo = maggior fabbisogno di zone di protezione delle acque sotterranee
- I vincoli territoriali non permettono di estendere le zone di protezione a piacere
- L'estensione previsionale delle zone di protezione è un criterio determinante nella scelta dell'ubicazione e del dimensionamento del pozzo
- Prevedere l'estensione può richiedere metodi complessi
- Alcuni fattori influiscono sulla protezione del pozzo (forma costruttiva, acquiferi sovrapposti, fiume-falda, strato copertura) ma non sul dimensionamento delle zone secondo OPAc